Evatueltion matrics with several methods.
Usage
eva_ME(num_Sim, num_Obs)
eva_MAE(num_Sim, num_Obs)
eva_MSE(num_Sim, num_Obs)
eva_RMSE(num_Sim, num_Obs)
eva_R2(num_Sim, num_Obs)
eva_NSE(num_Sim, num_Obs)
eva_KGE(num_Sim, num_Obs, num_Scal = c(1, 1, 1))Details
Root Mean Square Error (RMSE)
\[ \mathrm{RMSE} = \sqrt{ \frac{1}{N} \sum_{i=1}^N \left( S_i - O_i \right)^2 } \]
Coefficient of Determination (R2)
\[ R^2 = \frac{\left( \sum_{i=1}^n (O_i - \bar{O})(S_i - \bar{S}) \right)^2}{\left( \sum_{i=1}^n (O_i - \bar{O})^2 \right) \cdot \left( \sum_{i=1}^n (S_i - \bar{S})^2 \right)} \]
Nash-Sutcliffe Efficiency (NSE)
from
\[ \mathrm{NSE} = 1 - \frac{ \sum_{i=1}^N \left( S_i - O_i \right)^2 }{ \sum_{i=1}^N \left( O_i - \bar{O} \right)^2 } \]
Kling-Gupta Efficiency (KGE)
from
\[ \mathrm{KGE} = 1 - \mathrm{ED} \]
\[ \mathrm{ED} = \sqrt{ \left( s[1](r-1) \right)^2 + \left( s[2](\alpha-1) \right)^2 + \left( s[3](\beta-1) \right)^2 } \]
where
\[ r = \frac{\text{cov}(S, O)}{\sigma_s \sigma_o} \]
\[ \alpha = \frac{\sigma_s}{\sigma_o} \]
\[ \beta = \frac{\mu_s}{\mu_o} \]
References
Adummy A (2024). “Not avalable.” Failed to insert reference with key = NSE_1970 from package = 'HydroRUB'. Possible cause — missing REFERENCES.bib in package 'HydroRUB' or 'HydroRUB' not installed. . Adummy A (2024). “Not avalable.” Failed to insert reference with key = KGE_2009 from package = 'HydroRUB'. Possible cause — missing REFERENCES.bib in package 'HydroRUB' or 'HydroRUB' not installed. . Adummy A (2024). “Not avalable.” Failed to insert reference with key = KGE_Kling_2012 from package = 'HydroRUB'. Possible cause — missing REFERENCES.bib in package 'HydroRUB' or 'HydroRUB' not installed. .